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Abstract: Discrete Fracture Network models (DFNs) are used to simulate fluid flow and particle 

transport through fracture networks in low permeability rock. Understanding these processes are 

essential in many subsurface applications, such as environmental restoration of contaminated 

fractured media, CO2 sequestration, detection of low-level nuclear tests, and hydrocarbon 

extraction. Compared with other models, DFNs allow for incorporation of a wider range of 

network characteristics but have substantially greater computation cost. These networks can be 

represented with graphs, allowing the use of graph theory tools to study the networks. I used 

Python to simulate flow and transport on a range of DFNs and analyzed these networks using 

methods from network analysis and spectral graph theory. My purpose was to find ways to gain 

insight about flow and transport on DFNs using these graph representations, bypassing the 

computationally intensive meshing typically required. My work is still in progress, but I have 

discovered several interesting trends and patterns that I believe could be useful towards my goal. 

If I am able to bring these results to fruition, they will aid subsurface geologists in extracting 

flow and transport information about fracture networks more efficiently. 

 

 

 
Working at home during my virtual internship. Photo credit: Destry Newton. 
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Introduction 

Discrete Fracture Networks (DFNs) are used to model fracture networks in low permeability 

rock. They allow simulation of fluid flow and particle transport on these networks. 

Understanding properties of flow and transport in fracture network is important in many areas, 

including climate management, nuclear testing detection, and environmental cleanup. The 

computation cost of DFN simulations is high, thus many efforts have been taken to reduce the 

computational demands while maintaining reliable results. DFNs can be represented by graphs, a 

process which extracts topological data about the networks, while forgetting geometric features. 

Graph representations have been used in a variety of ways to decrease the computational 

requirements for flow and transport simulations on DFNs. This summer, I was tasked with 

studying these graph representations from the perspective of spectral graph theory, looking for 

new ways to gain information about DFNs efficiently. This project appealed to me because of 

my interest in graph theory and topology. I enjoyed the opportunity to work with familiar 

concepts in a significantly more applied setting than I have previously experienced.  

 

Description of the Research Project 

Three-dimensional DFNs use two-dimensional shapes to model fractures in a three-dimensional 

domain. For my project, we chose to model the fractures using discs with radii sampled from the 

truncated power law distribution shown in equation 1. This aligns with what has been observed 

in field studies for some classes of rock.  
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I used the computational suite dfnWorks, designed by scientists at Los Alamos, to generate 30 

such DFNs for each of ten values of α. Below are images of a few of the DFNs I generated for 

different values of α. 

Figure 1: DFNs with α = 1.25, 2, and 2.75 (left to right) 

In the images above, each disc (modeled by polygons) represents a fracture in the cubic rock 

mass outlined in white. I also generated graphs corresponding to each of my sample DFNs. 

There are three different graphs which have been used to model DFNs. The first, called the 

fracture graph has a vertex representing each fracture and an edge connecting each pair of 

vertices representing intersecting fractures. The intersection graph has a vertex representing each 

intersection between two fractures and an edge connecting two vertices if the intersections 

represented by the two vertices share a common fracture. Finally, there is a bipartite graph 

representation which contains a vertex representing each fracture and each intersection. There is 

an edge between two vertices in this graph if one vertex represents a fracture and the other vertex 

represents an intersection on that fracture. Figure 2 shows the fracture graph representing the 

DFN with α = 1.25 pictured above.  

My task was to search for ways to use spectral graph theory to understand these graphs, with the 

goal of finding ways to gain information about these networks and properties of their flow and 

transport at a reduced computation cost. Spectral graph theory studies the eigenvalues of the 



 
 

 
Figure 2: Fracture graph representing a DFN with α = 1.25 

Laplacian operator associated with a graph. The Laplacian operator is a discrete version of the 

Laplacian operator on manifolds. It takes a real-valued function defined on the vertices of a 

graph and returns the gradient of the flux of this function. The range of the eigenvalues, the 

multiplicity of certain key eigenvalues, the least non-zero eigenvalue, and the general 

distribution of eigenvalues have been shown to reveal both local and global information about a 

graph. The eigenvalues of the adjacency matrix of a graph are also sometimes studied in spectral 

graph theory. 

I used dfnWorks to simulate fluid flow and particle transport on the DFNs I generated. I 

compared the passage times of particles in networks generated with different values of α. See 

Figure 3. In this figure, there are noticeable differences between the initial and peak 

breakthrough times for different values of α. 

I also calculated and plotted the Laplacian and adjacency spectra for each of the graphs 

associated to the DFNs I generated. The Laplacian spectra for my fracture graphs are shown in 

Figure 4. There is a noticeable decrease in the density of eigenvalue 1 as α increases. High  

 



 
 

multiplicity of eigenvalue 1 can indicate a high degree of local symmetries, which can be 

observed in our graphs.  

 

Figure 3: Breakthrough curves for DFNs generated using different 

values of α as the power law exponent 

 

Finally, I calculated and plotted various other features of the graphs. See Figure 5 for an 

example. The source and target connectivity shown in this figure is a measure of the number of 

edges which must be removed in order to disconnect the inflow and outflow boundaries.  

 

 

Figure 4: Laplacian spectra of fracture graphs of DFNs generated 

using different values of α as the power law exponent 



 
 

 

Figure 5: Source and target connectivity of DFNs generated using 

different values of α as the power law exponent 

 

I am currently working to find connections between the breakthrough curves representing 

passage times of particles and graph properties. My hope is to be able to predict properties of 

flow and transport based on the graph spectrum.  

Contributions Made to the Project 

I wrote code in Python to generate the DFNs and associated graphs described above using the 

dfnWorks suite. I used the package NetworkX to calculate various information about these 

graphs, including information about their spectra, and I used the package Matplotlib to visualize 

my findings. I met regularly with my mentors to discuss my progress and decide on next steps.  

Additionally, I compiled a document with my findings. I included detailed information about the 

various statistics calculated, including their formal definitions, examples, intuition, and 

interpretation in the context of our graphs. I also spent time reading about spectral graph theory 

and included a substantial section in the document describing my findings. My hope is that this 

document is written in such a way so that the scientists at the lab can read and understand it, so 

that it might be of use to them if they choose to pursue further research in this direction in the 

future. 



 
 

I gave a talk about my research at a seminar for my research group at the lab describing my 

progress on the project. I explained some background on the project, gave a brief introduction to 

spectral graph theory, and displayed some of the interesting plots I created. I discussed my hopes 

for the project should I be able to continue it in the future.  

Skills and Knowledge Gained 

Mathematically, I learned a significant amount about spectral graph theory and network analysis. 

I now understand central questions and results within these fields. I also gained practice 

translating between a physical system (fracture networks) and an abstracted system (graph 

representations).  

I also made substantial gains in my programming abilities and confidence. I had previously 

coded for a few classes and occasionally on my own, but this was my first experience that 

required writing extensive code and developing the code over time. I’ve improved my ability to 

design complex functions and workflows. For the first time, I was forced to think about writing 

code efficiently. I gained experience with several commonly used python packages. Finally, I 

found that I can pick up new programming skills quickly and have a much higher confidence in 

my ability to learn new programming skills.  

Additionally, I practiced using other tools essential to any computer scientist. I became much 

more comfortable using the command line. I learned basics of VIM and git. I also took advantage 

of LANL’s computing resources, incorporating parallel processing and cluster computing to 

drastically reduce run times.  

Because of the diverse backgrounds of those I worked with, I was required to take extra care to 

explain concepts in simple and clear ways. I often needed to find ways to share ideas with 

researchers of varying mathematical backgrounds. This requires effort and attention, and is an 

essential skill for anyone working in an interdisciplinary context. 



 
 

Finally, I gained understanding about the daily working life of laboratory employees and a 

broader understanding of the overarching mission of Los Alamos National Laboratory. I 

discovered that there are many opportunities at LANL for researchers with quantitative 

backgrounds, and I have a much better understanding of how to develop and prepare myself for 

such a job.  

Relevance to the Mission of NSF 

Understanding fluid flow and particle transport in fracture networks in low permeability rock has 

a broad range of applications, as described above, including climate control, nuclear testing 

detection, and environmental safety. These applications are critical to advancing national 

security and global well-being. Currently, methods for simulating flow and transport in fracture 

networks can be very computationally intensive. It is my hope that the work I’ve done this 

summer can be used to find computationally cheaper ways to obtain the same information. This 

will aid scientists nationally and abroad in running more complex simulations and extracting 

more data about the applications at hand.  

Research Experience Impact on Your Academic and Career Planning 

I was quite surprised to discover how much I enjoyed my research project over the summer. 

Previously, my research has been very theoretical, with the only applications to other areas of 

theoretical math. I had become frustrated with my inability to see any of the fruits of my work. 

This summer, I was able to apply the mathematical skills I have developed as a graduate student 

to an applied problem, where not only could I clearly see why my research was important, but I 

could easily explain to others outside of academia why my work mattered. I found this very 

motivational and exciting.  

I also particularly enjoyed the collaborative aspect of my internship. I have worked with others 

on research projects in the past, but typically with other researchers who have similar 



 
 

backgrounds to my own. The interdisciplinary nature of the collaboration on this project allowed 

everyone a unique perspective to contribute. I felt energized by the idea that I might have 

distinctive and important perspectives to contribute to the team. 

During my internship, I was able to speak with many lab employees about their careers. Several 

employees lauded the work-life balance available to lab workers and the friendly professional 

environment. I learned that many of the stressors which plague the careers of other PhD holders 

are less prevalent in national lab jobs, allowing a more relaxed and focused work atmosphere. I 

believe that a national lab job is an excellent fit for my work style, priorities, and ambitions.  

As a result of my enjoyment of the internship, I plan to further develop skills for applied 

research, such as programming, machine learning, and data analysis. I registered for a deep 

learning class for the fall semester and hope to do reading about topological data analysis. I 

desire to take advantage of the numerous opportunities at my university to enhance these critical 

skills over the coming years. 

Further, I plan to shift my research direction to help me focus these abilities. Previously, my 

work featured a minimal computational component, but in the future, I desire to incorporate 

computation more centrally. I have already discussed these plans with my PhD advisor and have 

several ideas about work to do in this direction.  

Finally, if I continue to enjoy working on more applied mathematics problems, I plan to apply 

for a postdoc position at a national lab once I approach my graduation date. I believe it would be 

an enjoyable, suitable, and rewarding next step for me. 
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